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ABSTRACT

Hypergraphs generalize traditional graphs by allowing hyperedges to connect multiple nodes, making
them well-suited for modeling complex structures with higher-order relationships, such as 3D meshes,
molecular systems, and electronic circuits. While topology is central to hypergraph structure, many
real-world applications also require node and hyperedge features. Existing hypergraph generation
methods focus solely on topology, often overlooking feature modeling. In this work, we introduce
FAHNES (feature-aware hypergraph generation via next-scale prediction), a hierarchical approach
that jointly generates hypergraph topology and features. FAHNES builds a multi-scale representation
through node coarsening, then learns to reconstruct finer levels via localized expansion and refinement,
guided by a new node budget mechanism that controls cluster splitting. We evaluate FAHNES on
synthetic hypergraphs, 3D meshes, and molecular datasets. FAHNES achieves competitive results
in reconstructing topology and features, establishing a foundation for future research in featured
hypergraph generative modeling.

1 Introduction

Training Examples Disjoint Generation
Baseline FAHNES

Figure 1: Examples of generated featured hypergraphs
by a sequential disjoint generation baseline and our
model (FAHNES).

Hypergraphs extend traditional graphs by allowing
edges—called hyperedges—to connect more than two
nodes, enabling a natural representation of complex, multi-way
interactions. This expressiveness makes hypergraphs well-
suited for modeling systems in molecular chemistry, electronic
circuit design, and 3D geometry. As a result, they have been
applied in diverse areas such as drug discovery [1], contagion
modeling [2], recommendation systems [3], molecular biology
[4], and urban planning [5].

Despite their wide applicability, generative models for hyper-
graphs remain relatively underexplored. Existing approaches
primarily focus on generating topology alone [6], neglecting the
generation of node and hyperedge features. As shown in Figure
1, the sequential generation of topology followed by features
is ineffective. Joint generation is particularly challenging for
hypergraphs due to their variable-size hyperedges and higher
structural complexity. Moreover, existing methods for featured graph generation use flat, non-hierarchical architectures,
which scale poorly [7, 8, 9].

In this work, we introduce a feature-aware hypergraph generation via next-scale prediction (FAHNES) model, a novel
hierarchical approach for jointly generating hypergraph topology and features. Inspired by multi-scale generative
strategies in image synthesis [10], FAHNES leverages a coarsening-expansion strategy [6, 11]: during training, it
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merges nodes based on connectivity to build a hierarchical representation, then learns to progressively recover finer-scale
hypergraphs. A key contribution is the use of a budget mechanism that tracks the number of permissible expansions per
cluster. This enables global structural constraints to influence local generation, helping to mitigate the limited receptive
fields of deep models. Additionally, we adapt flow-matching optimal transport (OT) coupling techniques [12, 13] to
learn straighter and more consistent flows during generation. Our main contributions are:

• We introduce the first hierarchical model for joint generation of hypergraph topology and features targeting specific
data distributions, such as 3D meshes and molecules.

• We propose a novel budget-based mechanism that improves global consistency during generation for hierarchical
methods.

• We generalize minibatch OT-coupling to our hypergraph generative setting.
• We validate our approach on both synthetic and real-world datasets, including molecular structures and 3D meshes,

showing promising results for hierarchical generative methods.

2 Related Work

Graph and hypergraph generation using deep learning. Graph generation has seen significant advances in recent
years. Early approaches, such as GraphVAE [14], employed autoencoders to embed graphs into latent spaces for
sampling. Subsequent models leveraged recurrent neural networks to sequentially generate adjacency matrices,
improving structural fidelity [15]. More recently, diffusion-based methods have enabled permutation-invariant graph
generation [16, 7], with extensions incorporating structural priors such as node degrees [17]. Many of these previous
methods jointly model node features and topology, but are limited to small graphs due to scalability challenges. For
example, diffusion-based models [7, 8, 9] operate over entire graphs by gradually corrupting structures and features,
then training models to denoise them. However, their scalability is constrained by the combinatorial nature of edge
prediction in large graphs.

To mitigate this, hierarchical methods have been proposed. For example, Bergmeister et al. [11] introduced a scalable
graph generation framework based on a coarsen-then-expand approach, merging nodes to form coarse representations
and progressively reconstructing finer details. This framework was extended to hypergraphs by Gailhard et al. [6],
which allows edges to connect more than two nodes. However, both methods focus exclusively on topology generation,
neglecting node and hyperedge features essential for many applications.

Applications of hypergraph generation. Generative models that capture both higher-order structure and node/hy-
peredge features are critical in numerous domains. In molecular design, regular graph generative models struggle to
accurately represent rings and scaffolds [7], which naturally correspond to hyperedges involving multi-atom interactions
rather than pairwise bonds. Similarly, 3D shape modeling involves surfaces such as triangles, quads, or general polygons
that extend beyond simple pairwise connectivity. Conventional approaches often rely on fixed topology, quantization, or
autoregressive sequence modeling with transformers [18, 19], limiting their flexibility and scalability. Hypergraphs
provide a more expressive framework by treating faces as hyperedges, enabling the joint generation of topology and
features.

In contrast to previous approaches that either target hypergraph topology alone or feature-aware graph generation, we
introduce the first method that jointly models both hypergraph structure and features within a unified and scalable
framework. FAHNES extends hierarchical generative methods with feature-aware expansions, a novel node budget
mechanism, and flow-matching training adapted to our strategy. This combination enables effective generative modeling
for featured hypergraphs.

3 Feature-aware Hypergraph Generation via Next-scale Prediction

Notations. Throughout this paper, we use calligraphic letters, like V , to represent sets, with their cardinality denoted by
|V|. Matrices are represented by bold uppercase letters (e.g., A), while vectors are indicated by bold lowercase letters
(e.g., x). The transpose and point-wise multiplication operations are denoted by (·)⊤ and ⊙, respectively. ⌈·⌋ denotes
rounding to the nearest integer.

Basic definitions. We define a graph G = (V, E) as a pair consisting of a set of vertices V and a set of edges E ⊆ V ×V .
Graphs may also carry node and edge features, represented by matrices FV ∈ R|V|×m and FE ∈ R|E|×l, where m
and l denote the dimensionality of the features. Each edge e ∈ E corresponds to a pair (u, v), indicating a connection
between nodes u and v. A bipartite graph B = (VL,VR, E) is a special case where the vertex set is split into two
disjoint subsets VL and VR, and edges exist only between the two parts, i.e., E ⊆ VL × VR. The full set of nodes is
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(a) Hypergraph (b) Clique expansion (c) Star expansion

Figure 2: Comparison of a hypergraph and its clique and star expansions.

V = VL ∪ VR. In this work, we consider node features for bipartite graphs, denoted by FL for the left-side nodes and
FR for the right-side nodes.

A hypergraph H extends the concept of a graph and is specified by a pair (V, E), where V represents the vertex set
and E comprises hyperedges, with each e ∈ E being a subset of V . The key distinction of hypergraphs lies in their
ability to connect arbitrary numbers of vertices through a single hyperedge. Similar to graphs, hypergraphs can possess
node and edge features, which are denoted FV and FE . We consider two fundamental graph-based representations of
hypergraphs: clique and star expansions. The clique expansion transforms a hypergraph H into a graph C = (Vc, Ec),
where Ec = {(u, v) | ∃ e ∈ E : u, v ∈ e}. The star expansion converts a hypergraph H into a bipartite structure
B = (VL,VR, Eb), where VL = V , VR = E , and Eb = {(v, e) | v ∈ VL, e ∈ VR, v ∈ e in H}. Left side nodes VL
represent the nodes of the hypergraph, while right side nodes VR represent hyperedges. We provide a visual example of
the clique and star expansions in Figure 2.

Our work aims to develop a model capable of sampling from the underlying distribution of a given featured hypergraph
dataset (H1, . . . ,HN ), i.e., learning the joint probability of features and topology of this distribution of hypergraphs. For
detailed mathematical proofs of all propositions and lemmas presented in this work, please consult the supplementary
material.

3.1 Overview

Previous work [6] simplifies hypergraph generation by reducing it to standard graph generation through two projections:
i) the clique expansion where every hyperedge becomes a clique that links all its incident nodes, and ii) the star
expansion, which produces a bipartite graph by introducing one node per hyperedge and connecting it to the nodes it
contains. While conceptually elegant, this approach faces significant challenges: i) it struggles to produce the correct
number of nodes, especially in large hypergraphs, and ii) it does not support the generation of node and hyperedge
features, limiting its applicability to real-world, featured domains.

To overcome the limitations of prior approaches, we propose two key contributions. First, we introduce a node budget
mechanism, in which generation begins with a single super-node carrying the full node budget. At each generation
step, this budget is recursively split among child nodes. This approach enables a more localized and structured control
over the final node count, compared to previous methods that simply concatenate the desired size to node embeddings.
Second, we propose hierarchical feature generation, where each expansion step predicts the mean feature of its future
child nodes, conditioned on the parent’s feature. This hierarchical feature generation scheme is thus a generalization of
[20] to hypergraphs, where the prediction at current scale conditions the predictions at next scale. To train FAHNES,
we adopt the flow-matching framework [21], where the generation process is formulated as learning to reverse a known
noising procedure. Specifically, the model is trained to recover the true values for node and hyperedge expansions, edge
deletions, budget allocations, and features, all of which are subjected to noise. Our workflow is illustrated in Figure 3.

3.2 Budgeted Coarsening

During coarsening, we keep track of two quantities for every cluster we create. First, budgets count how many nodes
the cluster already contains. Every node and hyperedge begins with a budget of 1; when several of them merge,
their budgets are summed and assigned to the new super-node or super-hyperedge. Secondly, features summarize the
attributes of the merged vertices. We use a weighted average: the feature of a cluster is the budget-weighted mean of
the features of its members.

Proposition 1. Setting cluster features as the average of the nodes they contain minimizes the mean squared error
(MSE) between the features of the fully expanded hypergraph and those of the original hypergraph.
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Figure 3: Our framework adopts a coarsening-expansion strategy. i) During training, input hypergraphs are progressively
coarsened by merging nodes and hyperedges, yielding a multiscale representation. Node features are averaged during
merging, and budgets are summed. ii) The model is trained to predict which nodes were merged at each scale. iii)
In the expansion phase, merged nodes are expanded (shown in dark), inheriting their parent’s features, budget, and
connectivity. The model is trained to (a) identify which edges should be removed (dotted lines), (b) predict how the
parent’s budget should be split across the children (instead of predicting absolute values), and (c) refine the features of
newly expanded nodes (refinement).

In what follows we denote left-side (node) budgets and features by bL ∈ N|VL| and FL, and right-side (hyperedge)
budgets and features by bR ∈ N|VR| and FR.

Definition 2 (Bipartite graph coarsening). Let H be an arbitrary hypergraph, C = (Vc, Ec) its unfeatured weighted
clique expansion, and B = (VL,VR, E ,bL,bR,FL,FR) its featured bipartite representation. Given a partitioning
PL = {V(1), . . . ,V(n)} of the node set VL such that each part V(p) induces a connected subgraph in C, we construct an
intermediate coarsening B̃(B,PL) = (V̄L,VR, Ē , b̄, F̄L,FR) by merging each part V(p) into a single node v(p) ∈ V̄L,
and by defining: (

b̄L

)
v(p) =

∑
v∈V(p)

(bL)v ,
(
F̄L

)
v(p) =

1(
b̄L

)
v(p)

∑
v∈V(p)

(bL)v (FL)v , (1)

for every supernode V(p). An edge e{p,q} ∈ Ē is added between v(p) ∈ V̄L and v(q) ∈ VR if there exists an edge
e{i,q} ∈ E in the original bipartite representation between some v(i) ∈ V(p) and v(q).

To complete the coarsening process, we define an equivalence relation v1 ∼ v2 ⇐⇒ N (v1) = N (v2) on VR, where
N (v) denotes the set of neighbors of v. This induces a partitioning PR = {V(1)

R , . . . ,V(m)
R }, allowing us to construct

the fully coarsened bipartite representation B̄(B̃,PL) = (V̄L, V̄R, Ē , b̄, F̄L, F̄R) by merging each part V(p)
R into a

single node v
(p)
R ∈ V̄R, similarly to the construction of V̄L, and by defining:(

b̄R

)
v(p) =

∑
v∈V(p)

R

(bR)v ,
(
F̄R

)
v(p) =

1(
b̄R

)
v(p)

∑
v∈V(p)

R

(bR)v (FR)v , (2)

for every superhyperedge V(p)
R .

Remark 3. Informally, we first pick the node clusters on the clique expansion, merge those nodes on the left side of the
bipartite graph, and compute their budgets and features as above. We then merge right-side nodes that appear multiple
times, i.e., they connect the same left-side nodes. In practice, for the final reduction step, when only one node and one
hyperedge remain, we also replace their features by matrices full of zeros. This design choice enables a fully agnostic
initial step during generation.
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3.3 Budgeted Expansion and Refinement

During expansion, since our framework only conditions on the total number of nodes in the final hypergraph, we
maintain a single node budget vector b ∈ N|VL| for the left-side (node) partition and discard the right-side (hyperedge)
budget. Each cluster is split into multiple child nodes, which initially inherit both the parent’s budget and feature vector.
A subsequent refinement step then determines: i) how the parent’s budget should be divided among its children, and ii)
how to update the children’s feature vectors.

More specifically, the expansion step duplicates vertices and hyperedges, with child nodes inheriting all of their parent’s
connections. The refinement step then i) removes edges that should not persist at the finer resolution, ii) redistributes
the integer budget among the child nodes according to a probability-like split vector, and iii) replaces the coarse features
with new refined predictions.

Formally, the expansion and refinement steps can be described as follows.

Definition 4 (Bipartite graph expansion). Given a bipartite graph B = (VL,VR, E ,b,FL,FR) and two clus-
ter size vectors vL ∈ N|VL|, vR ∈ N|VR|, denoting the expansion size of each node, let B̃(B,vL,vR) =

(ṼL, ṼR, Ẽ ,bexpanded,Fexpanded
L ,Fexpanded

R ) denote the expansion of B, whose node sets, budgets, and features are given
by:

ṼL = V(1)
L ∪ · · · ∪ V(|VL|)

L , where V(p)
L = {v(p,i)L | 1 ≤ i ≤ vL[p]} for 1 ≤ p ≤ |VL|,

ṼR = V(1)
R ∪ · · · ∪ V(|VR|)

R , where V(p)
R = {v(p,i)R | 1 ≤ i ≤ vR[p]} for 1 ≤ p ≤ |VR|,(

bexpanded)
v
(p,i)
L

= bV(p)
L

for 1 ≤ i ≤ vL[p], 1 ≤ p ≤ |VL|,(
Fexpanded

L

)
v
(p,i)
L

= (FL)V(p)
L

for 1 ≤ i ≤ vL[p], 1 ≤ p ≤ |VL|,(
Fexpanded

R

)
v
(p,i)
R

= (FR)V(p)
R

for 1 ≤ i ≤ vR[p], 1 ≤ p ≤ |VR|.

(3)

The edge set Ẽ includes all the cluster interconnecting edges: {e{p,i;q,j} | e{p,q} ∈ E , v
(p,i)
L ∈ V(p)

L , v
(q,j)
R ∈ V(q)

R }.
Remark 5. Expansion thus acts as a clone-and-rewire operation: vertices and hyperedges are duplicated, and each child
inherits every incident edge of its parent.

Definition 6 (Bipartite graph refinement). Given a bipartite graph B̃ = (ṼL, ṼR, Ẽ ,b,FL,FR), an edge selection
vector e ∈ {0, 1}|E|, a budget split vector f ∈ [0, 1]|ṼL|, satisfying

∑
v∈V(p)

L

fv = 1 for all cluster V(p)
L in VL, and two

feature refinement vectors Frefine
L and Frefine

R with the same dimensions as FL and FR, let B(B̃, e, f ,Frefine
L ,Frefine

R ) =

(ṼL, ṼR, E , ⌈b ⊙ f⌋,Frefine
L ,Frefine

R ) denote the refinement of B̃, where E ⊆ Ẽ such that the i-th edge e(i) ∈ E if and
only if e[i] = 1.

Remark 7. Edges are selectively removed based on the binary indicator vector e, and features are updated with new
predictions. Node budgets are divided among child nodes according to the split proportions specified by the vector f .
Since budgets must be integers, the resulting values are rounded. In the case of a tie (e.g., when an odd number must be
split evenly), the child with the lowest index receives the larger share, and the remaining budget is distributed among
the others accordingly.

The generation of a hypergraph with N nodes proceeds in three main stages:

1. Initialization. Start from a minimal bipartite graph: B(L) = ({1}, {2}, {(1, 2)}), consisting of a single node on
each side connected by one edge. The left-side node is assigned the full node budget, i.e., b = (N). If node and
hyperedge features need to be generated, FL and FR are initialized as zero matrices.

2. Expansion and refinement. Iteratively expand and refine the current bipartite representation to add details until the

desired size is attained: B(l) expand−−−→ B̃(l−1) refine−−−→ B(l−1).
3. Hypergraph reconstruction. Once the final bipartite graph is generated, construct the hypergraph by collapsing each

right-side node into a hyperedge connecting its adjacent left-side nodes.

3.4 Probabilistic Modeling

We now present a formalization of our learning framework, generalizing [11, 6]. Let {H(1), . . . ,H(N)} denote a set of
i.i.d. hypergraph instances. Our aim is to approximate the unknown generative process by learning a distribution p(H).

5
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We model the marginal likelihood of each hypergraph H as a sum over the likelihoods of its bipartite representation’s
expansion sequences:

p(H) = p(B) =
∑

ϖ∈Π(B)

p(ϖ), (4)

where Π(B) denotes the set of valid expansion sequences from a minimal bipartite graph to the full bipartite represen-
tation B corresponding to H . Each intermediate B(l−1) is generated by refining its predecessor, in accordance with
Definitions 4 and 6.

Assuming a Markovian generative structure, the likelihood of a specific expansion sequence ϖ is factorized as:

p(ϖ) = p(B(L))︸ ︷︷ ︸
1

1∏
l=L

p(B(l−1)|B(l)) =

1∏
l=L

p(e(l−1)|B̃(l−1))p(v
(l)
L ,v

(l)
R ,b(l),F

(l)
L ,F

(l)
R |B

(l)). (5)

To simplify the modeling process and avoid learning two separate distributions p(e(l)|B̃(l)) and
p(v

(l)
L ,v

(l)
R ,b(l),F

(l)
L ,F

(l)
R |B(l)), we rearrange terms as follows:

p(ϖ) = p(e0|B̃0)p(v
(L)
L ,v

(L)
R )

[
1∏

l=L−1

p(v
(l)
L ,v

(l)
R ,b(l),F

(l)
L ,F

(l)
R |B

(l))p(e(l)|B̃(l))

]
, (6)

where p(v
(L)
L ,v

(L)
R ,b(L),F

(L)
L ,F

(L)
R ) = p(v

(L)
L ,v

(L)
R ,b(L),F

(L)
L ,F

(L)
R |B(L)).

We assume that the variables v(l)
L , v(l)

R , b(l), F(l)
L , and F

(l)
R are conditionally independent of B̃(l) when conditioned on

B(l):
p(v

(l)
L ,v

(l)
R ,b(l),F

(l)
L ,F

(l)
R |B

(l), B̃(l)) = p(v
(l)
L ,v

(l)
R ,b(l),F

(l)
L ,F

(l)
R |B

(l)). (7)

This allows us to write the combined likelihood as:

p(v
(l)
L ,v

(l)
R ,b(l),F

(l)
L ,F

(l)
R |B

(l))p(e(l)|B̃(l)) = p(v
(l)
L ,v

(l)
R , e(l),b(l),F

(l)
L ,F

(l)
R |B

(l)). (8)

3.5 Flow-matching

We use a flow-matching framework [21] with an endpoint parameterization similar to [22], or alternatively a denoising
diffusion model [23] with linear interpolation between the prior and target distribution. The objective is to align two
probability distributions p0 and p1 by evolving the points from the initial distribution p0 to the target distribution p1.
This is achieved by defining a flow through a time-dependent vector field f(x, t), governed by the following ordinary
differential equation (ODE) ∂x

∂t = f(x, t),x0 ∼ p0, where f(x, t) is learned such that, after integrating the ODE,
samples from p1 can be generated.

With endpoint parametrization, the model learns to predict the endpoint x1 of the trajectory. The flow f(x, t) can then
be recovered from the predicted endpoint x̂1(x, 1) using the relation:

f(xt, t) =
x̂1(x, 1)− xt

1− t
. (9)

To train the model, the loss function minimizes the squared difference between the predicted endpoint x̂1(xt, t) and the
actual endpoint x1:

L = Et∼U(0,1), x0∼p0, x1∼p1

[
(x̂1(xt, 1)− x1)

2
]
, where xt = tx1 + (1− t)x0. (10)

For the expansion process and edge selection, we set p0 as the Gaussian distribution. For budget splits, as their support
is constrained to the simplex, we use flow matching similarly to [22], where p0 is a Dirichlet distribution across all
clusters. The model predictions are projected on the simplex using a Von Neumann projection [24]. Features are
generated using the process introduced in [20], i.e., p0 is the Gaussian distribution, and the feature of the parent cluster
is given as conditioning during generation using a FiLM layer [25]. More details can be found in the supplementary
material.

6
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3.6 Minibatch OT-coupling

Minibatch OT-coupling [12, 13] has shown promising results in image generation by encouraging smoother and more
linear generative trajectories, which can improve sampling efficiency and model convergence. Instead of sampling
independently from the prior and target distributions, OT-coupling aligns samples within each minibatch via an optimal
transport plan. Specifically, samples are first drawn from the prior (typically Gaussian), then their corresponding target
samples are drawn, and finally, the prior samples are optimally matched (reindexed) to the targets to minimize transport
cost. We extend this idea to our setting by applying OT-coupling to the children of an expanded node, treating these
children as a minibatch. For each expansion, we solve a local OT problem to align the initial noised samples of children
with their corresponding targets.

A crucial constraint is to avoid swapping samples between non-equivalent nodes—i.e., only nodes that are structurally
and feature-wise indistinguishable up to noise can be swapped. Swapping non-equivalent nodes would alter the learned
data distribution and degrade model fidelity. To keep computational costs manageable, we restrict OT-coupling to
groups of children within a single expanded cluster, satisfying the equivalence condition. Since our expansion step
produces two children per cluster, OT-coupling simplifies to evaluating just two permutations per cluster, making it
extremely lightweight and easily parallelizable using standard tensor operations.

We summarize our theoretical guarantee as follows:

Proposition 8 (Informal). Minibatch OT-coupling in our framework preserves the target distribution while improving
the straightness and consistency of the learned generative flow.

4 Experiments and Results

In this section, we detail our experimental setup, covering datasets, evaluation metrics, results, and ablation studies.
The datasets are divided into featureless and featured hypergraphs. For the featureless hypergraphs, we compare
FAHNES against HyperPA [26], a Variational Autoencoder (VAE) [27], a Generative Adversarial Network (GAN)
[28], and a standard 2D diffusion model [23] trained on incidence matrix images, where hyperedge membership is
represented by white pixels and absence by black pixels. For the featured hypergraphs, we compare FAHNES against
the graph-based models DiGress [7], DisCo [9], Cometh [29], and DeFoG [30] in a molecular dataset. For 3D meshes,
we also compare FAHNES with a sequential disjoint generation baseline (see Figure 1), where we first generate the
hypergraph topology and then the features. Extended numerical results and several visualizations of our generated
hypergraphs are available in the supplementary material.

The graph-based approaches DiGress, DisCo, Cometh, and DeFoG are only tested on a simple graph dataset because
they cannot generate hypergraphs. Although one might attempt to generate hypergraphs using these existing graph
generators over the star or clique expansions, this strategy is impractical for several reasons. First, generating the
clique expansion of a hypergraph and then recovering the original hyperedges is an NP-hard problem, as it requires
enumerating all cliques. Second, in the bipartite representation of a hypergraph, it is non-trivial to determine which
partition represents nodes and which represents hyperedges—a distinction that is critical for correct reconstruction.
Empirically, we also find that graph-based generative models often fail to produce valid bipartite structures. For instance,
we observed that only 30% of outputs from both models [11, 7] generated valid bipartite graphs.

Datasets. We evaluate our method on five featureless datasets: Stochastic Block Model (SBM) [31], Ego [32], Tree
[33], ModelNet40 bookshelf, and ModelNet40 piano [34]. We also evaluate FAHNES on three featured hypergraphs
datasets, including two sets of 3D meshes and one molecular dataset: Manifold40 bench, Manifold40 airplane1 [35],
and QM9 [36, 37] with implicit hydrogens. In the case of bench and airplane, node features are 3D positions, and
hyperedges do not have features. For QM9, both nodes and hyperedges have features, which are one-hot vectors coding
for atom types and bond types, respectively. Although molecules can be represented as traditional graphs, modeling
them with hypergraphs opens the door to representing higher-order interactions between atoms. However, in this work,
we treat molecules strictly as graphs, with hyperedges corresponding to simple pairwise bonds. Future work could
group functional groups’ atoms together in hyperedges. Further details of the datasets are provided in the supplementary
material.

Metrics. For featureless hypergraphs, we follow the evaluation criteria in [6]. These include: i) structural compar-
ison metrics such as Node Num (difference in node counts), Node Deg (Wasserstein distance between node degree
distributions), and Edge Size (Wasserstein distance between hyperedge size distributions); ii) topological analysis with
Spectral (maximum mean discrepancy between the spectral distributions). In scenarios where datasets enforce structural

1The full set of numerical results for the Manifold40 datasets is provided in the supplementary material.
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Table 1: Comparison between FAHNES and other baselines for the SBM, Ego, and Tree hypergraphs.

Model
SBM Hypergraphs Ego Hypergraphs Tree Hypergraphs

Valid
SBM ↑

Node
Num ↓

Node
Deg ↓

Edge
Size ↓ Spectral ↓ Valid

Ego ↑
Node

Num ↓
Node
Deg ↓

Edge
Size ↓ Spectral ↓ Valid

Tree ↑
Node

Num ↓
Node
Deg ↓

Edge
Size ↓ Spectral ↓

HyperPA [26] 2.5% 0.075 4.062 0.407 0.273 0% 35.83 2.590 0.423 0.237 0% 2.350 0.315 0.284 0.159
VAE [27] 0% 0.375 1.280 1.059 0.024 0% 47.58 0.803 1.458 0.133 0% 9.700 0.072 0.480 0.124
GAN [28] 0% 1.200 2.106 1.203 0.059 0% 60.35 0.917 1.665 0.230 0% 6.000 0.151 0.459 0.089
Diffusion [23] 0% 0.150 1.717 1.390 0.031 0% 4.475 3.984 2.985 0.190 0% 2.225 1.718 1.922 0.127
HYGENE [6] 65% 0.525 0.321 0.002 0.010 90% 12.55 0.063 0.220 0.004 77.5% 0.000 0.059 0.108 0.012

FAHNES 81.4% 0.010 0.603 0.005 0.005 100% 0.162 0.171 0.129 0.007 82.8% 0.000 0.043 0.046 0.002

Table 2: Evaluation on the ModelNet40 hypergraphs.

Model
ModelNet40 Bookshelf ModelNet40 Piano

Node
Num ↓

Node
Deg ↓

Edge
Size ↓ Spectral ↓ Node

Num ↓
Node
Deg ↓

Edge
Size ↓ Spectral ↓

HyperPA [26] 8.025 7.562 0.044 0.048 0.825 9.254 0.023 0.067
VAE [27] 47.45 6.190 1.520 0.190 75.35 8.060 1.686 0.396
GAN [28] 0.000 397.2 46.30 0.456 0.000 409.0 86.38 0.697
Diffusion [23] 0.000 20.36 2.346 0.079 0.050 20.90 4.192 0.113
HYGENE [6] 69.73 1.050 0.034 0.068 42.52 6.290 0.027 0.117

FAHNES 0.875 5.600 0.087 0.019 0.125 1.878 0.028 0.036

Table 3: Evaluation on QM9.

Model QM9
Valid ↑ Unique ↑ FCD ↓

DiGress [7] 99.0% 96.2 –
DisCo [9] 99.3% – –
Cometh [29] 99.6% 96.8 0.25
DeFoG [30] 99.3% 96.3 0.12
FAHNES 77.8% 94.3 3.86

constraints, we report Valid—the proportion of generated samples satisfying those constraints. For all metrics except
Valid, lower values indicate improved performance, while higher values are preferable for Valid.

In the case of 3D meshes, we use the nearest training sample Chamfer distance, which computes the Chamfer distance
between point clouds sampled from a generated sample and all training samples and outputs the minimum distance.
For QM9, we use the same metrics as in [30]: i) overall validity of molecules with Valid (fraction of molecules that
can be sanitized using RDKit [38]); ii) diversity of samples with Unique (fraction of unique SMILES generated); and
iii) chemical similarity with the learned distribution with FCD (Fréchet inception distance between the activations of
ChemNet on the train samples and generated samples [39]).

Implementation details. We adopt the Local PPGN architecture [11, 6]. During generation, we use inpainting to
enforce constraints: i) budget splits are fixed to 1 for unexpanded or terminal clusters, ii) equal splits are enforced for
expanded clusters with a budget of 2, iii) clusters of size one cannot expand, and iv) features for non-expanded clusters
are copied.

Comparison with the baselines. Tables 1 and 2 show the comparisons in the featureless hypergraphs. We observe
that FAHNES significantly improves previous methods in many metrics. This is especially evident in the SBM and
Ego hypergraphs, where the percentage of valid hypergraphs increases by 16.4% and 10%, respectively. Similarly, the
spectral similarity has been improved in the ModelNet40 and Tree hypergraphs.

Regarding the Manifold40 dataset, FAHNES obtains a Chamfer distance of 0.073 and 0.049 for bench and airplane,
respectively, while the sequential baseline reaches 0.143 and 0.117, respectively. This shows the better modeling
capacity of FAHNES to jointly generate topology and features in hypergraphs instead of a simple two-step approach.
Similarly, Table 3 shows the results in the QM9 dataset, where we observe FAHNES presents promising results, even
though our model is not explicitly tailored for the problem of molecule generation. Extended results on featured
hypergraphs and visual comparisons of the different approaches are provided in the supplementary material.

Table 4: Ablation studies on the node budget (Budg.) and minibatch OT-coupling (Coup.) for SBM, Ego, and Tree
hypergraphs.

Budg. Coup.
SBM Hypergraphs Ego Hypergraphs Tree Hypergraphs

Valid
SBM ↑

Node
Num ↓

Node
Deg ↓

Edge
Size ↓ Spectral ↓ Valid

Ego ↑
Node

Num ↓
Node
Deg ↓

Edge
Size ↓ Spectral ↓ Valid

Tree ↑
Node

Num ↓
Node
Deg ↓

Edge
Size ↓ Spectral ↓

✗ ✗ 77.7% 0.020 0.889 0.041 0.006 99.0% 2.383 0.239 0.139 0.006 92.2% 0.005 0.066 0.161 0.011
✗ ✓ 79.9% 0.123 0.815 0.023 0.006 98.5% 1.721 0.223 0.184 0.010 83.8% 0.000 0.045 0.083 0.006
✓ ✗ 71.6% 0.039 1.413 0.005 0.013 100% 0.459 0.129 0.279 0.010 74.5% 0.005 0.039 0.050 0.003
✓ ✓ 81.4% 0.010 0.603 0.005 0.005 100% 0.162 0.171 0.129 0.007 82.8% 0.000 0.043 0.046 0.002
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Table 5: Ablation studies on the node budget (Budg.) and minibatch
OT-coupling (Coup.) for ModelNet40 datasets.

Budg. Coup.
ModelNet40 Bookshelf ModelNet40 Piano

Node
Num ↓

Node
Deg ↓

Edge
Size ↓ Spectral ↓ Node

Num ↓
Node
Deg ↓

Edge
Size ↓ Spectral ↓

✗ ✗ 8.6 5.951 0.043 0.027 8.125 3.546 0.075 0.026
✗ ✓ 7.225 4.183 0.109 0.037 2.375 5.529 0.160 0.028
✓ ✗ 1.525 5.232 0.069 0.013 11.275 4.127 0.072 0.027
✓ ✓ 0.875 5.600 0.087 0.019 0.125 1.878 0.028 0.036

Ablation studies. Tables 4 and 5 present some
ablation studies of FAHNES. More precisely,
we analyze the importance of the budget and
minibatch OT-coupling. In general terms, we
observe that using budgets instead of concate-
nating the target size to each node embedding
has an important effect on the Node Num, Node
Deg, and Edge Size metrics. Similarly, the mini-
batch OT-coupling has a positive effect on the
validity of the spectral similarity of the gener-
ated hypergraphs.

We also observe additional interesting properties tied to the budget: i) training is more stable, with smoother curves for
the metrics on the validation and test sets, and ii) we observe less variance in the quality of generated samples, which
translates into a higher correlation between the metrics of the validation set and those of the test set. We hypothesize
that the constraints introduced by the node budgets maintain the predictions in the high probability regions.

Limitations. While our node budget mechanism helps mitigate the issue of missing nodes, it does not fully solve it. On
molecular generation tasks, FAHNES is less competitive due to the maturity of one-shot models in this domain: in
hierarchical settings, structural errors accumulate over sequential predictions. In addition, FAHNES assumes continuous
features, making it less effective for categorical data like atom or bond types—scenarios where discrete diffusion
is more appropriate. Similarly, specialized techniques such as marginal probabilities [7], designed specifically for
molecule generation, cannot be readily integrated into our setting. Furthermore, our framework prioritizes scalability,
which limits the use of high-capacity backbones such as graph transformers [40]. Future work could explore discrete
diffusion for topology and adopt a mixed discrete-continuous formulation [22] to better handle structured, symbolic
domains.

5 Conclusion

We presented FAHNES, the first hierarchical framework for jointly generating hypergraph topology and features. By
combining coarse-to-fine structural modeling with feature-aware generation, our method enables scalable synthesis of
complex hypergraphs, surpassing the limitations of flat or disjoint approaches. Key innovations include a recursive
node budget mechanism and the use of minibatch OT-coupling, which together improve sample quality and training
convergence. Experiments across synthetic, molecular, and geometric datasets demonstrate strong performance in
both topology and feature generation, often outperforming existing baselines. While FAHNES is not yet competitive
with domain-specific pipelines—particularly for molecule generation—it opens promising directions for structured
generative modeling.
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This supplementary material offers additional technical details and formal proofs to complement the main paper. The
document is structured as follows: Appendix A discusses more detailed implementation details of FAHNES. Formal
proofs of the main propositions are presented in Appendix B, while Appendix C analyzes the algorithmic complexity of
our approach. Appendix D describes our procedure for sampling coarsening sequences. Algorithms for model training
and sampling featured hypergraphs are detailed in Appendix E. Appendix F outlines the experimental setup, including
hyperparameter choices and numerical results. Validation curves for multiple datasets are shown in Appendix G.
Appendix H provides illustrative examples of coarsening sequences, and Appendix I presents visual comparisons
between training and generated samples.

A Implementation Details

A.1 Model Architecture

Our method represents the expansion numbers for left and right nodes, along with edge presence, as attributes of
the bipartite graph. To model the distribution p(v

(l)
L ,v

(l)
R , e(l), f ,Frefine

L | B̃(l)), we adopt an endpoint-parameterized
flow-matching framework [21]. Within this framework, the attributes—namely, the expansion vectors and edge
indicators—are corrupted with noise, and a denoising network is trained to reconstruct the original values.

The denoising network is structured as follows:

1. Positional encoding: Node positions within the graph are encoded using SignNet [41]. These encodings are
replicated according to the respective expansion numbers.

2. Attribute embedding: Five separate linear layers are used to embed the bipartite graph attributes: left node features,
right node features, edge features, node-specific features, and hyperedge-specific features. FiLM conditioning [25]
is applied to incorporate contextual information into node and hyperedge features. Node budgets are embedded
using sinusoidal positional encodings [42].

3. Feature concatenation:
• For each left and right node, embeddings are concatenated with positional encodings and the desired reduction

fraction. Left nodes also receive the node budget embedding.
• If node features are present, they are appended to the left nodes. Likewise, hyperedge features are appended to

the right nodes when available.
• For edges, embeddings include edge features, concatenated positional encodings of the incident nodes, and the

reduction fraction.

4. Graph processing: The attribute-enriched bipartite graph is processed through a stack of sparse PPGN layers,
following the architecture from [11].

5. Output prediction: The final graph representations are passed through three linear projection heads to generate
outputs.

• Left node head: Predicts expansion values, budget splits, and refined node features.
• Right node head: Predicts hyperedge expansions and refined hyperedge features.
• Edge head: Predicts edge existence.

A.2 Flow-matching Framework

We employ a flow-matching generative modeling framework [21], with endpoint parameterization following [22],
equivalent to denoising diffusion models [23] using linear interpolation between the prior p0 and target p1 distributions.
The goal is to align two distributions by transporting samples from p0 to p1 through a learned time-dependent vector
field f(x, t), governed by the ODE:

∂x

∂t
= f(x, t), x0 ∼ p0. (11)

Here, f(x, t) is trained such that integrating this ODE produces samples from p1.

Endpoint parameterization. Instead of directly modeling the flow field, we learn the terminal point x̂1(xt, 1) of the
trajectory. The flow can be recovered using:

f(xt, t) =
x̂1(xt, 1)− xt

1− t
. (12)
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Training objective. The model is trained to minimize the expected squared error between the predicted and true
endpoints:

L = Et∼U(0,1), x0∼p0, x1∼p1

[
∥x̂1(xt, 1)− x1∥2

]
, (13)

where xt = (1− t)x0 + tx1 is a linear interpolation between samples from the prior and target distributions.

Modeling setup. We use different prior distributions depending on the task:

• Node and edge predictions: Prior samples p0 are drawn from a Gaussian distribution. Targets are either −1 or 1,
indicating binary decisions (e.g., whether a node is expanded or an edge is retained).

• Hyperedge expansion: Similar to node and edge predictions, with targets −1, 0, or 1, encoding the number of
expansions (none, one, or two).

• Budget fractions: Prior samples p0 are drawn from a Dirichlet distribution with concentration parameter α = 1.5,
linearly mapped to [−1, 1] via 2x − 1. The target is the budget fraction of each child node, linearly mapped to
[−1, 1] via 2x− 1. If a cluster is not expanded, the corresponding budget becomes 1. Parent cluster budgets are
encoded using sinusoidal positional encodings [42] (dimension 32, base frequency 10−4).

• Feature generation: Following [20], we draw prior features from a Gaussian and predict true node features,
conditioned on the parent node’s feature using a FiLM layer [25].

Simplex projection via Von Neumann method. When modeling budget fractions, predictions must lie on the
probability simplex. To ensure this, we project the model’s outputs using the Von Neumann projection [24], which finds
the closest point (in Euclidean distance) on the simplex:

∆K =

{
x ∈ RK | xi ≥ 0,

K∑
i=1

xi = 1

}
. (14)

i) Sort z ∈ RK into a descending vector u, such that u1 ≥ u2 ≥ · · · ≥ uK .

ii) Find the smallest index ρ ∈ {1, . . . ,K} such that:

uρ −
1

ρ

 ρ∑
j=1

uj − 1

 > 0. (15)

iii) Compute the threshold:

τ =
1

ρ

 ρ∑
j=1

uj − 1

 . (16)

iv) The projection is then:
x∗ = max(z− τ, 0). (17)

A.3 Additional Details

Perturbed expansion. Building on [11, 6], we augment Definitions 4 and 6—which are sufficient for reversing
coarsening steps—with additional randomness to enhance generative quality. This modification is especially beneficial
in low-data regimes where overfitting is a concern. Specifically, we introduce a probabilistic mechanism that supplements
the set of edges Ẽ by randomly adding edges between node pairs on opposite sides of the bipartite graph that are within
a fixed distance in B. The following definition extends the expansion process (Definition 4) to include this stochastic
component.

Definition 9 (Perturbed hypergraph expansion). Let B = (VL,VR, E) be a bipartite graph, and let vL ∈ N|VL| and
vR ∈ N|VR| denote the left and right cluster size vectors. For a given radius r ∈ N and probability 0 ≤ p ≤ 1, we
construct B̃ as in Definition 4. Additionally, for each pair of distinct nodes vL(p) ∈ ṼL and vR(q) ∈ ṼR that are
within a distance of at most 2r + 1 in B, we independently add an edge e{pi,qj} to Ẽ with probability p.

Spectral conditioning. In line with [43, 11], we incorporate spectral information—specifically, the principal eigenvalues
and eigenvectors of the normalized Laplacian—as a form of conditioning during the generative process. This technique
has been shown to improve the quality of generated graphs. To generate B(l) from its coarser form B(l+1), we leverage
the approximate spectral invariance under coarsening. We compute the k smallest non-zero eigenvalues and their
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corresponding eigenvectors from the normalized Laplacian matrix L(l+1) of B(l+1). These eigenvectors are processed
using SignNet [41] to produce node embeddings for B(l+1). These embeddings are then propagated to the expanded
nodes of B(l), helping to preserve structural coherence and facilitate cluster identification. The hyperparameter k
controls the number of spectral components used.

Minibatch OT-coupling. Minibatch OT-coupling [12, 13] has demonstrated effectiveness in image generation tasks
by encouraging models to learn more linear and efficient generative trajectories. Rather than sampling from the prior
and target distributions independently, the two distributions are sampled jointly through the following procedure. First,
samples are drawn from the prior distribution (typically Gaussian), followed by sampling corresponding targets (e.g.,
images). Then, the prior samples are reindexed to minimize the total distance between each input and its associated
output. This coupling yields faster convergence and smoother generative flows, thereby reducing the number of sampling
steps required during inference.

We extend this idea to our setting by treating the children of an expanded node as a minibatch and applying OT-coupling
to the prior samples associated with these nodes. Importantly, we avoid mixing prior samples between “non-equivalent
nodes”, i.e., nodes for which swapping the targets results in a different target hypergraph, as doing so changes the
learned distribution. To prevent this, we restrict OT-coupling to groups of nodes that only differ with respect to their
starting noise, i.e., nodes that are equivalent both topologically and in terms of features.

To manage computational complexity, we adopt the reasonable assumption that such groups of equivalent nodes
correspond to the children of an expanded cluster. This assumption holds in practice when the joint topology-feature
distribution is sufficiently complex. As a result, our method achieves faster convergence and requires fewer sampling
steps at inference time, with only a very negligible impact on training efficiency. In our framework, expanded clusters
yield two child nodes, so minibatch OT-coupling reduces to evaluating two permutations per cluster—an operation that
can be efficiently parallelized using tensor operations. Algorithm 1 summarizes the process.

Algorithm 1 Minibatch OT-coupling for coarsening/expansion strategy

Require: Expanded bipartite representation B with clusters {V (p)}, each V (p) containing 1 or 2 nodes; target samples
{xi}

Ensure: Reindexed noise samples {z̃i}
1: Sample noise {zi} for each node in B
2: for all clusters V (p) ∈ B do
3: if |V (p)| = 1 then
4: No reassignment needed for singleton cluster
5: else if |V (p)| = 2 then
6: Let i, j be the indices of the two nodes in V (p)

7: Let xi, xj be their corresponding targets
8: Compute normal order cost:

Cnormal ← ∥zi − xi∥2 + ∥zj − xj∥2

9: Compute swapped order cost:

Cswap ← ∥zj − xi∥2 + ∥zi − xj∥2

10: if Cswap < Cnormal then
11: Swap zi ↔ zj
12: end if
13: end if
14: end for
15: return {z̃i} (reassigned noise samples)
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B Proofs

B.1 Averaging Node Features for Clusters’ Features

Proposition 10. Setting cluster features as the average of the nodes they contain minimizes the Mean Squared Error
(MSE) between the fully expanded hypergraph and the original hypergraph.

Proof. Let H = (V, E) be a hypergraph with node set V and hyperedge set E , and let Hl = (Vl, El) denote the lifted
hypergraph obtained by expanding each cluster C ⊆ V of size |C|-clique. By construction, there exists a bijection
ϕ : V → Vl mapping each original node to its corresponding lifted node. Suppose each node v ∈ V is associated with a
feature vector xv ∈ Rd, and each cluster C ⊆ V is assigned a cluster feature vector xC ∈ Rd, which is inherited by all
lifted nodes ϕ(v) for v ∈ C. Define the mean squared error between the original node features and the cluster features
in the lifted hypergraph as:

MSE =
∑
v∈V
∥xv − xC(v)∥2, (18)

where C(v) denotes the cluster containing node v.

To minimize the MSE, it suffices to minimize, for each cluster C,

JC(xC) =
∑
v∈C
∥xv − xC∥2. (19)

Since JC is a convex quadratic function in xC , we find its minimum by setting the gradient to zero:

∇xCJC(xC) =
∑
v∈C

2(xC − xv) = 2|C|xC − 2
∑
v∈C

xv = 0. (20)

Solving for xC , we obtain

xC =
1

|C|
∑
v∈C

xv, (21)

which is the arithmetic mean of the feature vectors in the cluster C.

B.2 Minibatch OT-coupling

Let B be a bipartite graph. Let b be its current budget repartition, FL its node features, and FR its hyperedge features.
Denote x = (vL,vR, e, f ,F

refine
L ,Frefine

R ), i.e., the predictions of the model. In the following, all distributions are
conditioned on b, FL and FR.

Proposition 11 (Marginal preservation). Under the OT-coupling of Algorithm 1, the joint distribution:

q(x0,x1)

has marginals:
q0(x0), q1(x1).

Definition 12 (Isomorphism of bipartite graphs in our setting). Let

B1 = (V1
L,V1

R, E1,b1,F1
L,F

1
R), B2 = (V2

L,V2
R, E2,b2,F2

L,F
2
R),

be bipartite graphs.

We say B1
∼= B2 (are isomorphic in our setting) if there exist bijections

σL : V1
L → V2

L, σR : V1
R → V2

R

such that:

1. Edge structure is preserved: (v, w) ∈ E1 ⇐⇒ (σL(v), σR(w)) ∈ E2,

2. Budgets are preserved: b1(v) = b2(σL(v)) for all v ∈ V1
L, b1(w) = b2(σR(w)) for all w ∈ V1

R,

3. Node and hyperedge features are preserved: F1
L(v) = F2

L(σL(v)), F1
R(w) = F2

R(σR(w)).
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Proof. Let f be an arbitrary test function defined on bipartite graphs. Algorithm 1 swaps noise samples between nodes
that are equivalent in the sense that their target graphs (conditioned on the same topology and conditioning features)
remain isomorphic after swapping. That is, if x0 and x′

0 differ only by such a swap, then the resulting graphs are
isomorphic: B(x0) ∼= B(x′

0). Let σ be the bijective reindexing function corresponding to this isomorphism. Since f is
defined on graphs and graphs are invariant under isomorphism, we have:

f(x0) = f(σ(x0)).

Therefore:

Eq(x0,x1)[f(x0)] = Eq(x1)

[
Eq(x0|x1)[f(x0)]

]
(22)

= Eq(x1)

[
Eq(x0)[f(σ(x0))]

]
(23)

= Eq(x1)

[
Eq(x0)[f(x0)]

]
(24)

= Eq(x0)[f(x0)]. (25)

Thus, the marginal distribution over x0 remains unchanged. The same argument applies symmetrically for x1 by using
σ−1, concluding the proof.

C Complexity Analysis

In this section, we investigate the asymptotic complexity of our proposed algorithm, which extends the methodology
introduced by [11] and [6]. To construct a hypergraph comprising n nodes, m hyperedges, and k incidences, the
algorithm sequentially produces a series of bipartite graphs B(L) = ({1}, {2}, {(1, 2)}), B(L−1), . . . , B(0) = B,
where the final graph B corresponds to the bipartite representation of the generated hypergraph. We use n, m, and k to
denote, respectively, the number of nodes, hyperedges, and incidences in the hypergraph, and as the number of left-side
nodes, right-side nodes, and edges in the corresponding bipartite graph.

For each level 0 ≤ l < L of the sequence, the number of left-side nodes in B(l), denoted nl, satisfies nl ≥ (1 + ϵ)nl−1

for some ϵ > 0 (e.g., ϵ = reduction_frac/(1− reduction_frac)). This implies an upper bound on the number
of steps in the expansion sequence: ⌈log1+ϵ n⌉ ∈ O(log n). Since the expansion process only increases node counts,
all Bl graphs contain fewer than n left-side and m right-side nodes. The number of edges, however, may temporarily
exceed k, as the intermediate bipartite graphs may include additional edges removed in later refinements. Still, because
the coarsening during training consistently reduces incidences, the model is expected to learn accurate edge refinement
and avoid such accumulation. Consequently, we assume kl ≤ k and ml ≤ m for all 0 ≤ l ≤ L.

Next, we assess the computational cost of generating a single expansion step. At level l = L, this consists of
creating a pair of connected nodes, initializing features as matrices of zeros, initializing budget as the targeted
node count, and predicting the expansion vectors vL and vR—a process with constant complexity O(1). For levels
0 ≤ l < L, given B(l+1) and expansion vectors v(l+1)

L , v(l+1)
R , the algorithm constructs the expanded bipartite graph

B̃(B(l+1),v
(l+1)
L ,v

(l+1)
R ) in O(n + m) time. It then samples v

(l)
L , v(l)

R , e(l), f , Frefine
L , and Frefine

R , and constructs
the refined graph B(l) = B(B̃(l), e(l), f ,Frefine

L ,Frefine
R ). Letting vLmax and vRmax be the maximum cluster sizes, the

incidence count in B̃(l) is bounded by kl ≤ kl+1v
L
maxv

R
max.

The sampling process queries a denoising model a constant number of times per step. The complexity is thus governed by
the architecture. In our case, since bipartite graphs are triangle-free, the Local PPGN model [11] has linear complexity
O(n+m+ k). Embedding computation for B(l) similarly costs O(n+m+ k). This includes calculating the top K
eigenvalues/eigenvectors of the Laplacian via the method from [44], with complexity O (K(nl+1 +ml+1 + kl+1)),
and embedding via SignNet, also linear in graph size due to fixed K.

The final transformation from the bipartite graph to a hypergraph—by collapsing right-side nodes into hyperedges—has
a cost of O(m + k). Under these assumptions, the total complexity to generate a hypergraph H with n nodes, m
hyperedges, and k incidences is O(n+m+ k).

D Coarsening Sequence Sampling

This section outlines our methodology for sampling a coarsening sequence π ∈ ΠF (H) for a given hypergraph H .
The full procedure is detailed in Algorithm 2. At each coarsening step l, let H(l) denote the current hypergraph, B(l)

its bipartite representation, and C(l) its weighted clique expansion. We begin by sampling a target reduction fraction
red_frac ∼ U([ρmin, ρmax]). We then evaluate all possible contraction sets F (C(l−1)) using a cost function c, where
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lower cost indicates higher preference. We employ a greedy randomized strategy that processes contraction sets in order
of increasing cost. For each set:

• The set is stochastically rejected with probability 1− λ.
• If not rejected:

– Overlap check: If the contraction set overlaps with any previously accepted contraction, it is discarded.
– Coarsening attempt: Otherwise, we compute tentative coarsened representations Ctemp and Btemp.
– Cluster constraint check: If all right-side clusters in Btemp contain at most three nodes, the contraction is

accepted.
– Update step: When a contraction is accepted, we:

* Sum the budgets of the nodes in the contraction set to define the new cluster budget.
* Compute the new cluster’s node features as a weighted average of the original features, using node budgets

as weights.

The loop terminates once the number of remaining nodes satisfies the stopping condition:

|V(l−1)
L | − |V̄(l)

L | > red_frac · |V(l−1)
L |,

i.e., when the number of nodes on the left side (corresponding to the original hypergraph nodes) has been reduced
by the sampled fraction. This framework is flexible, allowing a variety of cost functions c, contraction families F ,
reduction fraction ranges [ρmin, ρmax], and randomization parameters λ.

Practical considerations. To avoid oversampling overly small graphs during training, we follow the heuristic of [11]:
when the current graph has fewer than 16 nodes, we fix the reduction fraction to ρ = ρmax. Due to the constraint that
no right-side cluster in B(l) may contain more than three nodes, achieving the target reduction fraction is not always
feasible. However, we observe empirically that this rarely poses a problem when ρmax is reasonably small.

During training, we sample a coarsening sequence for each dataset graph, but only retain a randomly selected
intermediate graph from the sequence. Thus, our practical implementation of Algorithm 2 is designed to return a single
coarsened graph with associated features and budgets, rather than the full sequence π.

To improve efficiency, we incorporate the caching mechanism introduced in [11]. Once a coarsening sequence is
generated, its levels are cached. During training, a random level is selected, returned, and then removed from the
cache. A new sequence is generated only when the cache for a particular graph is depleted, avoiding unnecessary
recomputation.

Hyperparameters. In all experiments described in Section 4, we use the following settings:

• Contraction family: The set of all edges in the clique representation, i.e., F (C) = E , for a weighted clique expansion
C = (V, E).

• Cost function: Local Variation Cost [45] with a preserving eigenspace size of k = 8.
• Reduction fraction range: [ρmin, ρmax] = [0.1, 0.3].

17
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Algorithm 2 Hypergraph coarsening sequence sampling: Randomized iterative coarsening of a hypergraph. At each
step, contraction sets are selected based on cost, while ensuring right-side clusters never merge more than three at a
time. Accepted contractions update the hypergraph structure, node budgets, and features.

Parameters: contraction family F , cost function c, reduction fraction range [ρmin, ρmax], randomization parameter λ
Input: hypergraph H with n nodes and m hyperedges; node features FL; hyperedge features FR

Output: coarsening sequence π = (H(0), . . . ,H(L)) ∈ ΠF (H)
1: function HYPERGRAPHCOARSENINGSEQ(H)
2: H(0) ← H
3: B(0) ← BipartiteRepresentation(H(0))
4: C(0) ←WeightedCliqueExpansion(H(0))

5: b
(0)
L ← (1, . . . , 1) ∈ Rn ▷ Initial node budgets

6: b
(0)
R ← (1, . . . , 1) ∈ Rm ▷ Initial hyperedge budgets

7: π ← (B(0),b
(0)
L ,FL,FR)

8: l← 0
9: while |V(l)

L | > 1 do
10: l← l + 1
11: red_frac ∼ Uniform([ρmin, ρmax]) ▷ Sample reduction fraction
12: f ← c(·, C(l−1), (P(l−1), . . . ,P(0))) ▷ Cost function
13: accepted_contractions← ∅
14: for S ∈ SortedByCost(F (C(l−1))) do
15: if Random() > λ then
16: if S ∩ (

⋃
P∈accepted_contractions P ) = ∅ then

17: Ctemp ← CoarsenCliqueExpansion(C(l−1), S)

18: Btemp ← CoarsenBipartite(B(l−1), S)
19: if ∀ right cluster R ∈ Btemp : |R| ≤ 3 then
20: accepted_contractions← accepted_contractions ∪ {S}
21: C(l) ← Ctemp, B(l) ← Btemp

▷ Update budgets and features for the new cluster
22: Let S = {v1, . . . , vk}, and the new node be v∗

23: b
(l)
L [v∗]←

∑k
i=1 b

(l−1)
L [vi]

24: F
(l)
L [v∗]← 1

b
(l)
L [v∗]

∑k
i=1 b

(l−1)
L [vi] · F(l−1)

L [vi]

25: end if
26: end if
27: end if
28: if |V(l−1)

L | − |V̄(l)
L | > red_frac · |V(l−1)

L | then
29: break
30: end if
31: end for
32: π ← π ∪ {B(l),b

(l)
L ,F

(l)
L }

33: end while
34: return π
35: end function
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E Training and Sampling Procedures

In this section, we present the complete training and inference procedures, detailed in Algorithms 4 and 5. Both
pipelines rely on node embeddings produced by Algorithm 3.

Algorithm 3 Node embedding computation: Here we describe the way the left and right side node embeddings
are computed for a given bipartite representation of a hypergraph. Embeddings are computed for the input bipartite
representation and then replicated according to the cluster size vectors.

Parameters: number of spectral features k
Input: bipartite representation B = (VL,VR, E), spectral feature model SignNetθ, cluster size vector vL and vR

Output: node embeddings computed for all nodes in VL and VR and replicated according to vL and vR

1: function EMBEDDINGS(B = (VL,VR, E), SignNetθ, vL, vR)
2: if k = 0 then
3: H = [h(1), . . . , h(|V|)]

i.i.d.∼ N (0, I) ▷ Sample random embeddings
4: else
5: if k < |V| then
6: [λ1, . . . , λk], [u1, . . . , uk]← EIG(B) ▷ Compute k spectral features
7: else
8: [λ1, . . . , λ|VL|+|VR|−1], [u1, . . . , u|VL|+|VR|−1]← EIG(B) ▷ Compute |VL|+ |VR| − 1 spectral

features
9: [λ|VL|+|VR|, . . . , λk], [u|VL|+|VR|, . . . , uk]← [0, . . . , 0], [0, . . . , 0] ▷ Pad with zeros

10: end if
11: H = [h(1), . . . , h(|VL|+|VR|)]← SignNetθ([λ1, . . . , λk], [u1, . . . , uk], B)
12: end if
13: B̃ = (V(1)

L ∪ · · · ∪ V(pl)
L ,V(1)

R ∪ · · · ∪ V(pr)
R , Ẽ)← B̃(B,vL,vR) ▷ Expand as per Definition 4

14: set B̃ s.t. for all pL ∈ [|VL|] and all pR ∈ [|VR|]: for all v(pi)
L ∈ V(pl)

L , H̃[pi] = H[pl] and for all v(pi)
R ∈ V(pr)

R ,
H̃[pi] = H[pr] ▷ Replicate embeddings

15: return H̃
16: end function
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Algorithm 4 End-to-end training procedure: This describes the entire training procedure for our model.

Parameters: number of spectral features k for node embeddings
Input: dataset D = {H1, . . . ,HN}, denoising model GNNθ, spectral feature model SignNetθ
Output: trained model parameters θ

1: function TRAIN(D, GNNθ, SignNetθ)
2: while not converged do
3: H ∼ Uniform(D) ▷ Sample graph
4: (B(0), . . . , B(L))← RndRedSeq(H) ▷ Sample coarsening sequence by Algorithm 2
5: l ∼ Uniform({0, . . . , L}) ▷ Sample level
6: if l = 0 then
7: v

(0)
L ← 1, v(0)

R ← 1
8: else
9: set v(l)

L and v
(l)
R such that the node sets of B̃(B(l),v

(l)
L ,v

(l)
R ) equals that of B(l−1)

10: end if
11: if l = L then
12: B(l+1) ← B(l) = ({1}, {2}, {(1, 2)},b = size(H),FL = 0,FR = 0)

13: v
(l+1)
L ← 1

14: v
(l+1)
R ← 1

15: e(l) ← 1
16: end if
17: set e(l), f , Frefine

L and Frefine
R such that B(B̃(B(l+1),v

(l+1)
L ,v

(l+1)
R ), e(l), f ,Frefine

L ,Frefine
R ) = B(L)

18: H(l) ← Embeddings(B(l+1),SignNetθ,v
(l+1)
L ,v

(l+1)
R ) ▷ Compute node embeddings

19: ρ̂← 1− (n(l)/n(l−1)), with n(l) and n(l−1) being the size of the left side of B(l) and B(l−1)

20: Dθ ← GNNθ(·, ·, B̃(l),H(l), n(0), ρ), where n(0) is the size of the left side of B(0)

21: take gradient descent step on∇θDiffusionLoss(v(L)
L ,v

(L)
R , e(l), f ,Frefine

L ,Frefine
R , Dθ)

22: end while
23: return θ
24: end function

Algorithm 5 End-to-end sampling procedure with deterministic expansion size: This describes the sampling
procedure. Note that this assumes that the maximum cluster sizes are 2 and 3, which is the case when using edges of
the clique representation as the contraction set family for model training.

Parameters: reduction fraction range [ρmin, ρmax]
Input: target hypergraph size N , denoising model GNNθ, spectral feature model SignNetθ
Output: sampled hypergraph H = (V, E) with |V| = N

1: function SAMPLE(N , GNNθ, SignNetθ)
2: B = (VL,VR, E , f ,Frefine

L ,Frefine
R )← ({1}, {2}, {(1, 2)}, N, 0, 0) ▷ Start with a minimal bipartite graph

3: vL ← [1], vR ← [1] ▷ Initial cluster size vectors
4: while |VL| < N do
5: H← Embeddings(B, SignNetθ,vL,vR) ▷ Compute node embeddings
6: n← ∥vL∥1
7: ρ ∼ Uniform([ρmin, ρmax]) ▷ random reduction fraction
8: set n+ s.t. n+ = ⌈ρ(n+ n+)⌉ ▷ number of left side nodes to add
9: n+ ← min(n+, N − n) ▷ ensure not to exceed target size

10: ρ̂← 1− (n/(n+ n+)) ▷ actual reduction fraction
11: Dθ ← GNNθ(·, ·, B̃(B,vL,vR),H, N, ρ̂)
12: (vL)0, (vR)0, (e)0, f ,F

refine
L ,Frefine

R ← Sample(Dθ) ▷ Sample features
13: set vL s.t. for i ∈ [n]: vL[i] = 2 if |{j ∈ [n] | (vL)0[j] ≥ (vL)0[i]}| ≥ n+ and v[i] = 1 otherwise
14: set vR s.t. for i ∈ [|(vR)0|]: vR[i] = 1 if (vR)0 < 1.66, vR[i] = 2 if (vR)0 < 2.33 and vR[i] = 3

otherwise
15: set e s.t. for i ∈ [|(e)0|]: e[i] = 1 if (e)0 > 0.5 and e[i] = 0 otherwise
16: B = (VL,VR, E)← B(B̃, e, f ,Frefine

L ,Frefine
R ) ▷ Refine as per Definition 6

17: end while
18: build H from its bipartite representation B
19: return H
20: end function
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F Experimental Details

For all experiments, we use embeddings with 32 dimensions for edge selection vectors and node and hyperedge
expansion numbers. When they exist, features are embedded with 128 dimensions. SignNet always has 5 layers and a
hidden dimension of 128. Positional encodings always have 32 dimensions. We always use 10 layers of Local PPGN.
We always use 25 sampling steps. All experiments are run for 24 hours on a single L40S. We use 8 CPU workers.

F.1 Experimental Details: Unfeatured Hypergraphs

Datasets. Our experiments utilize five datasets: three synthetic and two real-world, consistent with those described in
[6]:

• Stochastic Block Model (SBM) hypergraphs [31]: Constructed with 32 nodes split evenly into two groups. Every
hyperedge connects three nodes. Hyperedges are sampled with probability 0.05 within groups and 0.001 between
groups.

• Ego hypergraphs [32]: Created by generating an initial hypergraph of 150–200 nodes with 3000 randomly sampled
hyperedges (up to 5 nodes each), then extracting an ego-centric subgraph by selecting a node and retaining only
hyperedges that include it.

• Tree-structured hypergraphs [33]: A tree with 32 nodes is generated using networkx, followed by grouping
adjacent tree edges into hyperedges. Each hyperedge contains up to 5 nodes.

• ModelNet40 meshes [34]: Hypergraphs are derived from mesh topologies of selected ModelNet40 categories. To
simplify computation, meshes are downsampled to fewer than 1000 vertices by iteratively merging nearby vertices.
Duplicate triangles are removed, and the resulting low-poly mesh is converted into a hypergraph. We focus on the
bookshelf and piano categories.

All datasets are divided into 128 training, 32 validation, and 40 testing hypergraphs.

Evaluation Metrics. We evaluate generated hypergraphs using the same suite of metrics as [6]:

• NodeNumDiff: Average absolute difference in node count between generated and reference hypergraphs.
• NodeDegreeDistrWasserstein: Wasserstein distance between node degree distributions of generated and reference

hypergraphs.
• EdgeSizeDistrWasserstein: Wasserstein distance between hyperedge size distributions.
• Spectral: Maximum Mean Discrepancy (MMD) between Laplacian spectra.
• Uniqueness: Fraction of generated hypergraphs that are non-isomorphic to one another.
• Novelty: Fraction of generated hypergraphs that are non-isomorphic to training samples.
• CentralityCloseness, CentralityBetweenness, CentralityHarmonic: Wasserstein distances computed between

centrality distributions (on edges for s = 1). For details see [46].
• ValidEgo: For the hypergraphEgo dataset only, proportion of generated hypergraphs that contain a central node

shared by all hyperedges.
• ValidSBM: For the hypergraphSBM dataset only, proportion of generated graphs that retain the original intra- and

inter-group connectivity patterns.
• ValidTree: For the hypergraphTree dataset only, proportion of generated samples that preserve tree structure.

Baselines. We compare our method against the following baselines:

• HyperPA [26]: A heuristic approach for hypergraph generation.
• Image-based models: We design three baseline models—Diffusion, GAN, and VAE—that operate on incidence

matrix representations of hypergraphs:
– Each model is trained to produce binary images where white pixels signify node-hyperedge membership.
– To normalize input sizes, incidence matrices are permuted randomly and padded with black pixels.
– Generated images are thresholded to obtain binary incidence matrices.

• HYGENE [6]: A hierarchical diffusion-based generator using reduction, expansion, and refinement steps.

Specific hyperparameters. We use λ = 0.3, our Local PPGN layers have a dimension of 128, and the hidden
dimension for our MLP is 256. We use perturbed hypergraph expansion with a radius of 2 and dropout of 0.5. Our
model has 4M parameters.

Detailed numerical results.
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Table 6: Detailed numerical results for ablation studies.

SBM Hypergraphs
Node Budget Minibatch OT Valid ↑ NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

✗ ✗ 77.7% 0.020 0.889 0.041 0.006 5.118 0.015 0.002
✗ ✓ 79.9% 0.123 0.815 0.023 0.006 6.3 0.015 0.003
✓ ✗ 71.6% 0.039 1.413 0.005 0.013 9.862 0.006 0.004
✓ ✓ 81.4% 0.010 0.603 0.005 0.005 3.962 0.009 0.002

Ego Hypergraphs
Node Budget Minibatch OT Valid ↑ NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

✗ ✗ 99.0% 2.383 0.239 0.139 0.006 5.720 0.007 4e-6
✗ ✓ 98.5% 1.721 0.223 0.184 0.010 3.784 6.7e-4 1.8e-5
✓ ✗ 100% 0.459 0.129 0.279 0.010 3.010 0 0
✓ ✓ 100% 0.162 0.171 0.129 0.007 6.061 0 0

Tree Hypergraphs
Node Budget Minibatch OT Valid ↑ NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

✗ ✗ 92.2% 0.005 0.066 0.161 0.011 0.406 0.022 0.006
✗ ✓ 83.8% 0 0.045 0.083 0.006 0.515 0.025 0.027
✓ ✗ 74.5% 0.005 0.039 0.050 0.003 0.528 0.042 0.026
✓ ✓ 82.8% 0 0.043 0.046 0.002 0.258 0.040 0.027

ModelNet Bookshelf
Node Budget Minibatch OT NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

✗ ✗ 8.615 5.951 0.043 0.027 102.547 0.113 0.003
✗ ✓ 7.225 4.183 0.109 0.037 63.778 0.197 0.003
✓ ✗ 1.525 5.232 0.069 0.013 79.016 0.087 0.003
✓ ✓ 0.875 5.600 0.087 0.019 32.723 0.113 0.002

ModelNet Piano
Node Budget Minibatch OT NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

✗ ✗ 8.125 3.546 0.075 0.026 42.991 0.102 0.002
✗ ✓ 2.375 5.529 0.160 0.028 50.349 0.097 0.002
✓ ✗ 11.275 4.127 0.072 0.027 31.312 0.168 0.002
✓ ✓ 0.125 1.878 0.028 0.036 43.326 0.072 0.001

F.2 3D Meshes

Datasets. Datasets for meshes are taken from Manifold40 [35], which is a reworked version of ModelNet40 [34] to
obtain manifold and watertight meshes. Meshes are subsequently coarsened to obtain low-poly versions of 50 vertices
and 100 triangles. We use two classes:

• Airplane comprising 682 training samples, 21 validation samples, and 23 testing samples.
• Bench comprising 144 training samples, 19 validation samples, and 30 testing samples.

Metrics. We use the same metrics as for hypergraphs, which are: NodeNumDiff, NodeDegree, EdgeSize, and Spectral.
To this we add a metric NearChamDist which computes the Chamfer distance between a point cloud sampled from the
surface of the generated mesh and equivalent point clouds sampled from the validation/test set meshes.

Baselines. We compare against a simple sequential baseline:

1. Our model (4M parameters) is trained for 1M steps on the topology of meshes without learning to generate the
features.

2. A simple Local PPGN model (4M parameters) is trained for 20 epochs as a flow-matching model to learn to generate
the 3D positions, with the topology fixed.

3. We use the best checkpoint of the first model to generate the topology, then apply the second model on this topology
to generate the 3D positions.

Specific hyperparameters. We use λ = 0.1, our Local PPGN layers have a dimension of 200, and the hidden
dimension for our MLP is 300. We use perturbed hypergraph expansion with a radius of 2 and dropout of 0.5. Our
model has 6M parameters.
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Detailed numerical results.

Table 7: Evaluation on Manifold40 Bench and Airplane datasets.

Method
Manifold40 Bench Manifold40 Airplane

Cham
Dist ↓

Node
Num ↓

Node
Deg ↓

Edge
Size ↓ Spectral ↓ Centr

Harm ↓
Centr
Clos ↓

Centr
Betw ↓

Cham
Dist ↓

Node
Num ↓

Node
Deg ↓

Edge
Size ↓ Spectral ↓ Centr

Harm ↓
Centr
Clos ↓

Centr
Betw ↓

Sequential 0.143 0.367 0.801 0.004 0.007 4.964 0.087 0.006 0.117 0.078 0.332 0.011 0.015 3.131 0.035 0.007

FAHNES 0.073 0.067 0.581 0.008 0.014 5.28 0.047 0.004 0.049 0 0.304 0.033 0.015 1.837 0.231 0.004

F.3 Molecules

Datasets. We use the QM9 dataset with implicit hydrogens. We generate 20,000 molecules for the metrics.

Metrics. We use the same metrics as DeFoG [30], that is:

• Valid: Fraction of generated samples that can be sanitized using RDKit.
• Novel: Fraction of generated samples whose SMILES are not present in the training dataset.
• Unique: Fraction of generated samples whose SMILES are unique.
• FCD: Fréchet ChemNet Distance [39] between the generated samples and test set.

Baselines.

Specific hyperparameters. We use λ = 0.1, our Local PPGN layers have a dimension of 128, and the hidden
dimension for our MLP is 256. We do not use perturbed hypergraph expansion. Our model has 4M parameters.
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G Validation Curves
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Figure 4: Valid SBM with and without budgets.
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Figure 5: Valid Ego with and without budgets.
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Figure 6: Valid Tree with and without budgets.
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Figure 7: NodeNumDiff for Bookshelf with and without budgets.
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H Examples of Coarsening Sequences

Figure 8: Examples of coarsening sequence for various meshes. Broad lines represent 2-edges.
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I Comparison between Training and Generated Samples

Train samples Generated samples
(i) Stochastic Block Model hypergraphs.

Train samples Generated samples
(ii) Ego hypergraphs.

Train samples Generated samples
(iii) Tree hypergraphs.

Train samples Generated samples
(iv) Bookshelf meshes topology.

Train samples Generated samples
(v) Piano meshes topology

Train samples Generated samples (sequential) Generated samples (joint)
(vi) Bench 3D meshes.
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Train samples Generated samples (sequential) Generated samples (joint)
(vii) Airplane 3D meshes.

(viii) Generated QM9 molecules.
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