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We introduce the first hierarchical method for large and complex featured (hyper)graph generation

Motivation
• Traditional one-shot approaches to graph generation struggle to scale effectively,
which restricts the size and complexity of the graphs they can produce. This high-
lights the need for hierarchical methods.

• However, existing hierarchical approaches lack the ability to generate node and
edge features, significantly limiting their applicability. Sequentially generating the
topology followed by features is insufficient; a joint generation strategy is required.

• Hypergraphs—an extension of graphs in which hyperedges can connect more than
two nodes—offer greater expressive power than standard graphs. For instance,
they can naturally represent complex structures such as 3D meshes.

(a) Original hypergraph
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(b) Clique expansion
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(c) Bipartite representation

Figure. A hypergraph, its clique expansion and its bipartite representation
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Like graphs [1] or images [2], unzoom (lose details) and train a model to zoom (re-
construct details). During training, hypergraphs are coarsened by merging nodes and
hyperedges, averaging features and summing budgets. The model learns to predict
merged nodes at each scale. In the expansion phase, those nodes are expanded
with the same connectivity, feature and budget as their parents, and the model learns
to: (a) identify excess edges, (b) split budgets, and (c) refine features.

Ideas
1. Node budgets: Rather than specifying a fixed number of nodes as input, the

model learns to allocate node budgets—the number of nodes each coarse clus-
ter should expand into—across different regions of the hypergraph during gen-
eration.

2. Coarsening: A coarsening algorithm [3] is applied to simplify the hypergraph by
merging nodes while preserving overall connectivity. When nodes are merged,
their features are averaged, and we record the number of original nodes within
each cluster, i.e. node budgets.

3. Generation: The model is trained to reverse the coarsening process by ex-
panding clusters back into individual nodes, inheriting their parent’s connectivity,
features, and budget. It then refines the structure by selectively pruning edges,
updating features, and distributing each parent’s budget among its children.

Figure. Examples of coarsening sequences for two 3D meshes.

Generated examples

Train samples Generated
(i) Stochastic Block Model hypergraphs

Train samples Generated
(ii) Ego hypergraphs

Train samples Generated
(iii) Tree hypergraphs (vi) Generated QM9 molecules

Train samples Sequential Joint
(iv) Bench 3D meshes

Train samples Sequential Joint
(v) Airplane 3D meshes

Numerical Results

Model
SBM Hypergraphs Ego Hypergraphs Tree Hypergraphs

Valid
SBM ↑

Node
Num ↓

Node
Deg ↓

Edge
Size ↓ Spectral ↓ Valid

Ego ↑
Node
Num ↓

Node
Deg ↓

Edge
Size ↓ Spectral ↓ Valid

Tree ↑
Node
Num ↓

Node
Deg ↓

Edge
Size ↓ Spectral ↓

HyperPA 2.5% 0.075 4.062 0.407 0.273 0% 35.83 2.590 0.423 0.237 0% 2.350 0.315 0.284 0.159
VAE 0% 0.375 1.280 1.059 0.024 0% 47.58 0.803 1.458 0.133 0% 9.700 0.072 0.480 0.124
GAN 0% 1.200 2.106 1.203 0.059 0% 60.35 0.917 1.665 0.230 0% 6.000 0.151 0.459 0.089
Diffusion 0% 0.150 1.717 1.390 0.031 0% 4.475 3.984 2.985 0.190 0% 2.225 1.718 1.922 0.127
HYGENE 65% 0.525 0.321 0.002 0.010 90% 12.55 0.063 0.220 0.004 77.5% 0.000 0.059 0.108 0.012

Ours 81.4% 0.010 0.603 0.005 0.005 100% 0.162 0.171 0.129 0.007 82.8% 0.000 0.043 0.046 0.002

Model
QM9

Valid
Mol ↑

Unique
Mol ↑ FCD ↓

DiGress 99.0% 96.2 –
DisCo 99.3% – –
Cometh 99.6% 96.8 0.25
DeFoG 99.3% 96.3 0.12

Ours 77.8% 94.3 3.86

Metrics
Manifold40 Bench Manifold40 Airplane

Sequential
Generation

Joint
Generation

Sequential
Generation

Joint
Generation

Node Num ↓ 0.367 0.067 0.078 0
Node Deg ↓ 0.801 0.581 0.332 0.304
Edge Size ↓ 0.004 0.008 0.011 0.033
Spectral ↓ 0.007 0.014 0.015 0.015

Cham Dist ↓ 0.143 0.073 0.117 0.049

Conclusions
• We propose a novel approach for hierarchical generation of featured (hyper)graphs.
• Our method draws inspiration from local expansion techniques [1] and the progres-
sive upsampling strategy used in image generation [2].

• The introduction of the node budget mechanism significantly enhances the quality
of the generated topologies.

• However, our method currently underperforms in molecule generation tasks com-
pared to traditional one-shot approaches.

Next: Improve the robustness of the generation process.
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