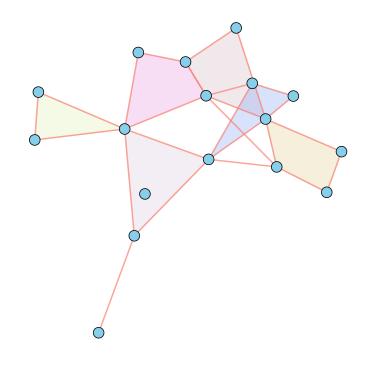
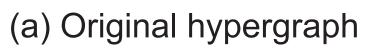


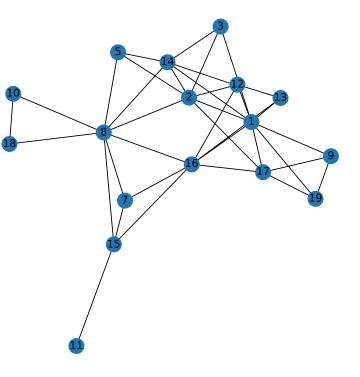
We introduce the first hierarchical method for large and complex featured (hyper)graph generation

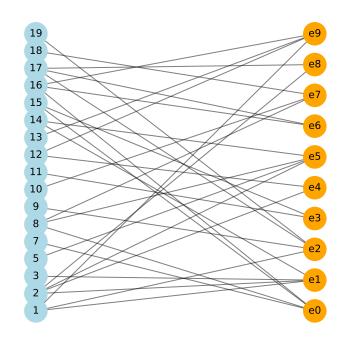
Motivation

- Traditional one-shot approaches to graph generation struggle to scale effectively, which restricts the size and complexity of the graphs they can produce. This highlights the need for hierarchical methods.
- However, existing hierarchical approaches lack the ability to generate node and edge features, significantly limiting their applicability. Sequentially generating the topology followed by features is insufficient; a joint generation strategy is required.
- Hypergraphs—an extension of graphs in which *hyper*edges can connect more than two nodes—offer greater expressive power than standard graphs. For instance, they can naturally represent complex structures such as 3D meshes.





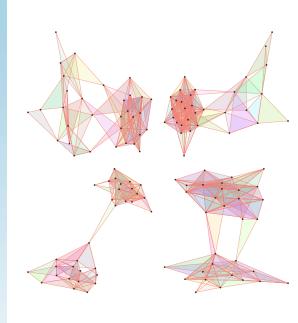


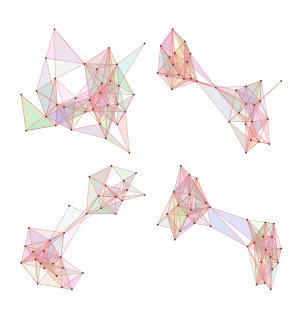


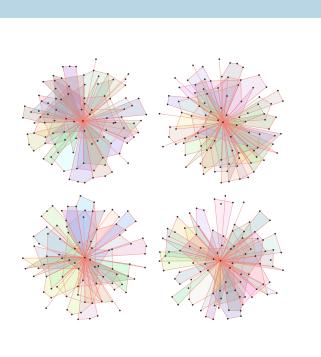
(b) Clique expansion

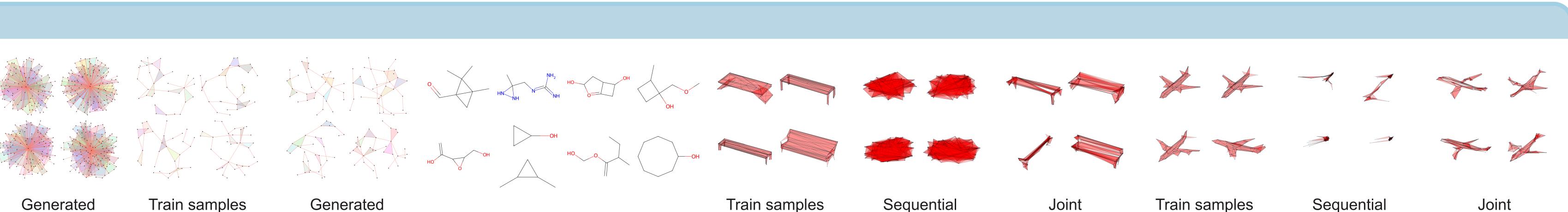
Figure. A hypergraph, its clique expansion and its bipartite representation

Generated examples









Train samples Generated (*i*) Stochastic Block Model hypergraphs

Train samples (*ii*) Ego hypergraphs

Numerical Results

		SBN	/I Hyper	graphs			Eg	o Hyper	graphs			Tree	e Hyper	graphs				QM9			Ma
Model	Valid SBM ↑	Node Num ↓	Node Deg ↓	•	Spectral ↓	Valid Ego ↑	Node Num ↓	Node Deg ↓	•	Spectral ↓	Valid Tree ↑	Node Num ↓		Edge Size ↓	Spectral \downarrow	Model	Valid Mol ↑	Unique Mol ↑	FCD \downarrow	Metrics	Seque Gener
HyperPA	2.5%	0.075	4.062	0.407	0.273	0%	35.83	2.590	0.423	0.237	0%	2.350	0.315	0.284	0.159	DiGress	99.0%	96.2	_	Node Num \downarrow	0.3
VAE	0%	0.375	1.280	1.059	0.024	0%	47.58	0.803	1.458	0.133	0%	9.700	0.072	0.480	0.124	DisCo	99.3%	_	—	Node Deg \downarrow	0.8
GAN	0%	1.200	2.106	1.203	0.059	0%	60.35	0.917	1.665	0.230	0%	6.000	0.151	0.459	0.089	Cometh	99.6%	96.8	0.25	Edge Size \downarrow	0.0
Diffusion	0%	0.150	1.717	1.390	0.031	0%	4.475	3.984	2.985	0.190	0%	2.225	1.718	1.922	0.127	DeFoG	99.3%	96.3	0.12	Spectral \downarrow	0.0
HYGENE	65%	0.525	0.321	0.002	0.010	90%	12.55	0.063	0.220	0.004	77.5%	0.000	0.059	0.108	0.012						
Ours	81.4%	0.010	0.603	0.005	0.005	100%	0.162	0.171	0.129	0.007	82.8%	0.000	0.043	0.046	0.002	Ours	77.8%	94.3	3.86	Cham Dist \downarrow	0.14

[1] Bergmeister, A., Martinkus, K., Perraudin, N., Wattenhofer, R. (2023). *Efficient and scalable graph generation through iterative local expansion* [2] S. Ren, Q. Yu, J. He, X. Shen, A. Yuille, L.-C. Chen. (2024). FlowAR: Scale-wise autoregressive image generation meets flow matching [3] Loukas, A. (2019). Graph reduction with spectral and cut guarantees

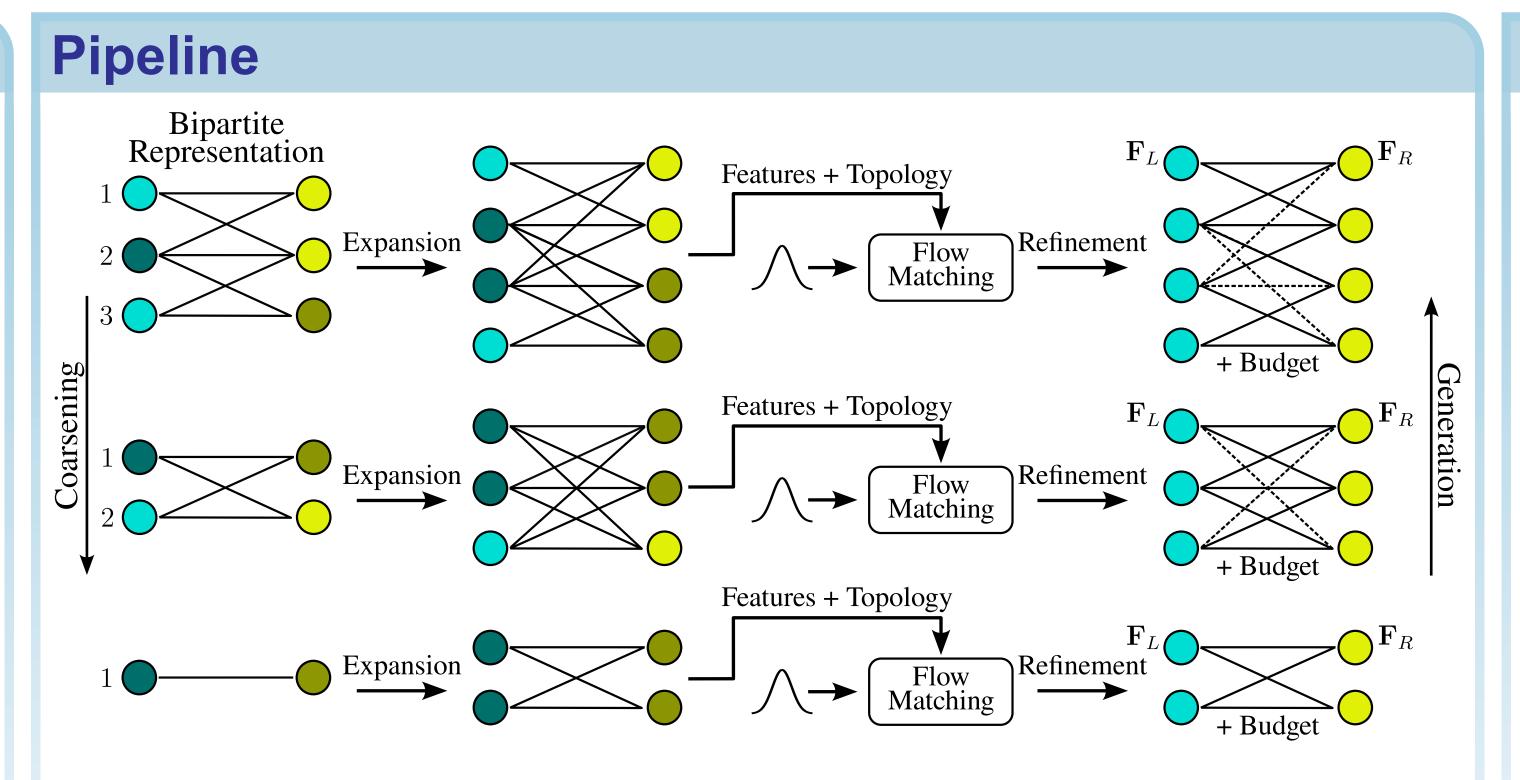
Acknowledgments: The authors acknowledge the ANR – France (French National Research Agency) for its financial support of the System On Chip Design leveraging Artificial Intelligence (SODA) project under grant ANR-23-IAS3-0004 and the JCJC project DeSNAP ANR-24-CE23-1895-01. This project has also been partially funded by the Hi!PARIS Center on Data Analytics and Artificial Intelligence.

Feature-aware Hypergraph Generation via Next-Scale Prediction

Dorian Gailhard Enzo Tartaglione Lirida Naviner Jhony H. Giraldo

LTCI, Télécom Paris, Institut Polytechnique de Paris, France {name.surname}@telecom-paris.fr

(c) Bipartite representation



Like graphs [1] or images [2], unzoom (lose details) and train a model to zoom (reconstruct details). During training, hypergraphs are coarsened by merging nodes and hyperedges, averaging features and summing budgets. The model learns to predict merged nodes at each scale. In the expansion phase, those nodes are expanded with the same connectivity, feature and budget as their parents, and the model learns to: (a) identify excess edges, (b) split budgets, and (c) refine features.

(*iii*) Tree hypergraphs

(vi) Generated QM9 molecules

Ideas

- eration.
- each cluster, *i.e. node budgets*.

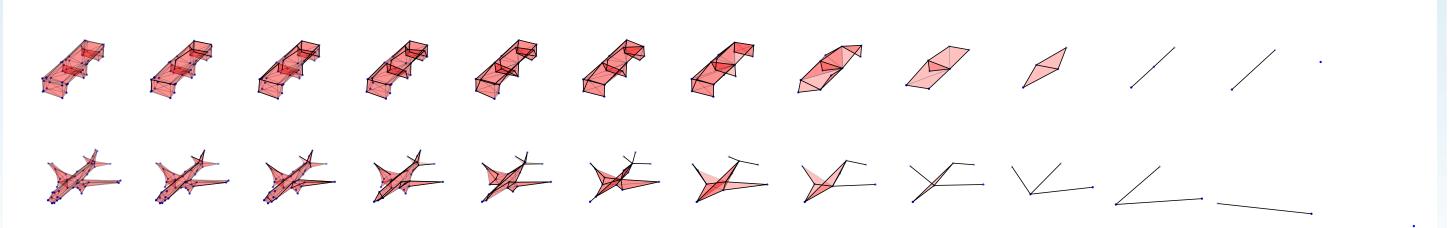


Figure. Examples of coarsening sequences for two 3D meshes.

143

0.073

(*iv*) Bench 3D meshes

nifold	40 Bench	Manifold40 Airplane				
ential ation	Joint Generation	Sequential Generation				
67	0.067	0.078	0			
01	0.581	0.332	0.304			
04	0.008	0.011	0.033			
07	0.014	0.015	0.015			

0.117

0.049

Conclusions

- sive upsampling strategy used in image generation [2].
- of the generated topologies.
- pared to traditional one-shot approaches.

Next: Improve the robustness of the generation process.

Node budgets: Rather than specifying a fixed number of nodes as input, the model learns to allocate *node budgets*—the number of nodes each coarse cluster should expand into—across different regions of the hypergraph during gen-

2. **Coarsening:** A coarsening algorithm [3] is applied to simplify the hypergraph by merging nodes while preserving overall connectivity. When nodes are merged, their features are averaged, and we record the number of original nodes within

3. Generation: The model is trained to reverse the coarsening process by expanding clusters back into individual nodes, inheriting their parent's connectivity, features, and budget. It then refines the structure by selectively pruning edges, updating features, and distributing each parent's budget among its children.

(v) Airplane 3D meshes

• We propose a novel approach for hierarchical generation of featured (hyper)graphs. • Our method draws inspiration from local expansion techniques [1] and the progres-

• The introduction of the node budget mechanism significantly enhances the quality

• However, our method currently underperforms in molecule generation tasks com-