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We introduce HYGENE, a hierarchical diffusion-based method for hypergraph generation.

Motivation
• Hypergraphs (higher-order extension of graphs where hyperedges can contain
more than two nodes) are more expressive than regular graphs.

• Broad field of application: 3D graphics (meshes), pharmaceutical research
(molecules), electronics (circuit design).

• No method directly generates hypergraph and generating the incidence matrix as
an image (using VAE, GAN and diffusion models) fails.

• Here we are interested in unfeatured hypergraphs. Our goal is to train a model able
to sample a specific connectivity distribution.

Generated Hypergraphs
Variational Autoencoder HYGENEDCGAN

Training Examples

Comparison of HYGENE with classical generation methods
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Like graphs [1], unzoom (lose details) and train a model to zoom (reconstruct details).
Working on graph projections is easier than on hypergraphs.

Ideas
1. Clique expansion: Each hyperedge is collapsed into a clique. The clique ex-

pansion has the same spectral properties as its hypergraph, but recovering a
hypergraph from its clique expansion is NP-hard. Used for coarsening.

2. Star expansion: The hypergraph is turned into a bipartite graph, where left side
nodes correspond to the original nodes, and right side nodes to hyperedges.
Each hyperedge is then connected to all of its nodes. Very easy to manipulate.
Maintained in parallel during coarsening.

(a) Original hypergraph
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(b) Clique expansion
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(c) Star expansion

A hypergraph and its clique and star expansions

Generated examples

Train Generated

(a) Erdos-Renyi

Train Generated

(b) Stochastic Block Model

Train Generated

(c) Ego

Train Generated

(d) Tree

Train Generated

(e) ModelNet40 Plant meshes

Train Generated

(f) ModelNet40 Piano meshes

Numerical Results

Model

SBM Hypergraphs Ego Hypergraphs Tree Hypergraphs Erdos-Renyi Hypergraphs ModelNet40 Piano ModelNet40 Plant
(navg = 31.73, std = 0.55) (navg = 109.71, std = 10.23) (navg = 32, std = 0) (navg = 32, std = 0.07) (navg = 177.29, std = 57.11) (navg = 124.86, std = 87.88)
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HyperPA 2.5% 4.062 0.407 0.273 0% 2.590 0.423 0.237 0% 0.315 0.284 0.159 5.530 0.183 0.177 9.254 0.023 0.067 6.566 0.046 0.061
VAE 0% 1.280 1.059 0.024 0% 0.803 1.458 0.133 0% 0.072 0.480 0.124 2.140 0.540 0.035 8.060 1.686 0.396 3.895 1.573 0.205
GAN 0% 2.106 1.203 0.059 0% 0.917 1.665 0.230 0% 0.151 0.469 0.089 2.560 0.657 0.048 409.0 86.38 0.697 378.1 56.35 0.364

Diffusion 0% 1.717 1.390 0.031 0% 3.984 2.985 0.190 0% 1.718 1.922 0.127 2.225 0.781 0.014 20.90 4.192 0.113 21.03 3.439 0.069

HYGENE 65% 0.161 0.002 0.010 90% 0.063 0.220 0.004 77.5% 0.059 0.108 0.012 0.445 0.012 0.006 6.290 0.027 0.117 2.428 0.027 0.034

Conclusions
• We introduced HYGENE, the first diffusion-based approach for hypergraph gener-
ation.

• Our work generalizes previous iterative local expansion schemes [1] and coarsen-
ing processes [2] to hypergraphs.

• By training a denoising diffusion model, we successfully validated the method’s
capability to generate hypergraphs from targeted distributions.

Next: Add features. Currently working on mesh generation.
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